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Abstract

Scott (1985a, 1985b) has recently studied two simple variations on the ordinary histogram,
namely the frequency polygon and the average shifted histogram, and found that they are able
to compete with for example kernel density estimators in performance while retaining the
advantage of being conceptually and computationally simple. The present paper proposes
a way of generalizing frequency polygons to d-dimensional space that performs better than
Scott’s generalization. Expressions for integrated mean sciua.red error and for integrated mean
absolute deviation plus integrated absolute bias are obtained for generalized frequency poly-
gons, for average shifted histograms, and for generalized frequency polygons of average shifted

histograms. These expressions are used to give guidelines for window sizes.

Key words and phrases: frequency polygons, average shifted histograms, multi-dimensional,

integrated mean squared error, integrated mean absolute deviation, integrated absolute bias.



1. Introduction.

A simple way in which to smooth a (univariate) histogram is to connect midbin values
with straight lines. This is the frequency polygon, which of course has been used for display
purposes at least since 1900. It was not demonstrated until recently, however, that the gain of -
this simple linear smoothing is substantial, and that the frequency polygon comes a long way
towards matching more sophisticated density estimators, while at the same time retaining the

advantage of being conceptually and computationally simple; see Scott (1985a, 1985b).

It is not obvious how the notion of a frequency polygon should be extended to two
and higher dimensions. Scott (1985a) gives one possible definition for the bivariate case,
but a general d-dimensional definition along his lines would be awkward, and expressions for
integrated mean squared error (IMSE), the traditional criterion by which to judge densiy
estimators, would be very difficult to obtain. In Section 2 we discuss a natural extension
termed the generalized frequency polygon, obtain the IMSE, and show that it performs better
than Scott’s version. We are also able to obtain an expression for ar;other natural criterion,
the integrated mean absolute deviation plus integrated absolute bias (IMAD + IAB), in the
general d-dimensional case. These expressions provide guidelines for the choice of binwidths,

and are informative for purposes of comparison with other density estimators.

Another neat construction of Scott (1985b) is the average shifted histogram, which shares
with the frequency polygon the virtues of matching (for example) kernel estimators in per-
formance while still being computationally more feasible when faced with the problem of
evaluating the estimator many times from a large data set, which, for example, is the task
of classification procedures built on no.nparametric density estimation. Scott (1985b) obtains
IMSE expressiqns for dimensions d = 1,2. His results are supplemented in Section 3 with

d-dimensional results for both IMSE and IMAD + IAB.

‘It' is only natural to try out the two tricks mentioned above in tandem, and define the
frequency polygon of the average shifted histogram. Again, Scott (1985b) has IMSE expressions.
for the uni- and bivariate case, but notes that explicit multivariate results are not generally
available. Section 4 studies; generalized frequency polygons of average shifted histograms, and

once more expressions for IMSE and for IMAD + IAB are obtained.



Some consequences of these results are briefly discussed in Section 5, and comparisons

with kernel density estimates are made.

Scott and others ha.vé emphasized the use of these histogram-type density estimates for
display purposes, even in three and four dimensions (!}, see for example Scott and Thompson
(1983). Apart from general theoretical interest, the present work has been motivated by the
possibility of using say generalized frequency polygons of average shifted histograms as building
blocks in classifiers in symbol recognition and reconstruction of remotely sensed images. Typi-
cal characteristics of these technological problems are large training sets and high-dimensional
feature vectors. The optimal classification rule depends upon a posteriori probabilities that
again are expressed in terms of class densities, and a natural way to proceed is to estimate
these nonparametrically. Classifiers built along these lines may use density estimators as “black
boxes”, and the need to display and scrutinize aspects of the data is secondar;. These remarks

also provide the motivation for having available a general d-dimensional theory.

To get started, let X3,:--, X,, be a sample of independent observations from an unknown
smooth density f in JR?. A common point of departure for later refinements will be a standard
histogram density estimate fo defined on a grid of cells with centres z; and volume Ay ---hgy,

i.e.

fo(ﬂ:) = (hl . 'hd)_IYQ(k)/n, zx < Io(k) (1.1)
where 4
1 1
I(k) = J_];[ (zk,j - Eh,’, Tk, + -ihj) (1.2)

is cell number k, and Y;(k) is the number of X;’s falling in this cell.

Although exact expressions sometimes result from the reasoning in what follows, let
us make clear that our analysis mainly is a large sample one, where Ay — 0,:--,hg — 0,
nhy+++hg — oo as the number of observations tends to infinity. These requirements are stan-

dard and ensure that fo above is consistent.

We shall not try to be as general as possible and shall be content to derive results for
densities f with support equal to the union of the histogram cells and with continuous deriva-

tives f;(z) = 3%; f(2), fie(z) = az Bzz 32— f(z), 1 jts () = m f(z) of first, second, and third

order.



2. Generalized Frequency Polygons.

Consider the histogram defined in (1.1), (1.2). To generalize the notion of a frequency
polygon, we should for a given z linearly combine nearby values of fo and hopefully get an

improved, smoothed ve;rsion. Fix a particular k, and shift attention to the new cell
I(k) H(zk iy Lk, + h!] = H(as - _hu ag + t]) (2.1)
=1 =1

where a = zj + 2h is in the middle of 2% histogram cells.

N

v

Figure 1. The GFP cell I(k) lies within 2¢ histogram cells Io(k; j1," -+, Ja)-

We want to define a generalized frequency polygon (GFP) in this “inner cell” by smoothing

the 2¢ histogram values fo(ék,1 +51h1,0 0, Ze,d+ Jaha) = fo(zx+37R), 5 = (41, -, 7a) € {0,1}4.
Write

f@ =3 cimial®)(hre--ha)Yo(k; fry- -+, 5a)/n, = € I(K) (2.2)

J1ade



where Yo(k; 71, -+, Ja) = Yo(k; 7) is the number of X;’s falling in

d
Io(ki ) = [J(oei + G = iy o0+ G + A
= (2.3)
= [I(ei + (G = Dhs, @i + Gihs].

=1

The 22 ¢c;-functions appearing in (2.2) are to be specified later. Natural immediate requirements
are cj(z) > 0, Zjcj(x) = 1, making sure that f is a density in IR%. The ordinary frequency

polygon is of the form (2.2), with d =1,

co(z) =1-u(z), eci(z)=u(z); ,
4
u(z) = (z — zx)/h, ze[a:k,zk+h]=[a——;-h, a+%h]. (24)

2.1. Bias of the GFP.

One might consider estimates of the of the form (2.2) with weights c;(z) determined by
the data; the discussion in the following is however limited to the case of non-random ¢;(z)

functions.

The exact expectation of the GFP is
Bf(@) = Y ci(@)(h1---ha) pold), = € I(K)
i
where

pol4) = /, e (2.5)

Approximations to E f (z) can now be worked out, for example based on Taylor expansions

around z. It serves our present purpose best, however, to expand around the point a = zx+ %h.



We get

o)/ (ha-+-ha) = | . {f(a)+Zf'(a)(zt )

=1

+ = Zﬁ'e(a)(zi —a;i)(ze—ag)+-- -}dz/(hl )

(2.6)
= f(a) + Z fi(a)3 ( 1)’-+1m + Z fiila)g *h?
i=1 s=1
+Zf“ (a)= ( 1)%+iepih,,
7L

where = here and below is used after shaving off higher order terms. This makes exposition

easier; regularity conditions are discussed later. Hence
Ef(z) = Zc,(x){f(a) > f@ 1, +an(a) &
=1

+Zf,¢(a) (- 1).7.+th B+ }

c;ét

—f(a)+2f.(a) h; Z( 1)"“6 (=)

i=1

+ Z fu(a) h2 + Z ftt(a) h ihe Z( 1)J.+Jtc (z)

=1 $#£L

It follows that
bias(z) = Ef(z) — f(=z)

d_ . 1 .
=3 ) { g S0 ee) - o~ )|

=1
2.7)
+Efn(a){ hi - _( zi - a;)*}
=1
+ 3 fu@ {3 e () - (o~ e —a) )
1#L

Expressions for integrated squared bias and integrated absolute bias in terms of any given
set of cj-functions can now be obtained, but we will refrain from doing so until the best choice

of ¢j-functions has been settled on.



2.2. Variance of the GFP.

Using multinomial moments we get from (2.4)
- - 1 . .
Var{f(z)} = (h1---ha)™? ch(x)zzpo(J){l - po()}
' j

— (hy-- k)72 Z cj(z)cji(z) %POU)POU')
i

= (nhy---hg)™ Z cj(z)?po(5)/ (k1 -+ - ha)

1 . 2 (2.8)
- S et} - b}
J
. - 1
= (nhy-+ha) M (0) T ei(2) - (o)
i
- d . 1 .
+5 (nhy- ha)™! fi(a)3hs > (1)t ().
=1 J
This approximation holds for z in I(k) = (a — }h, a + 3h].
2.3. The right choice: The linear blend interpolator.
Introduce
1 1
u; = ui(z) = (20 — zx;3)/hi, i € [Thji, Thi + hi] = [as — 'z'hi, a; + Ehi], (2.9)

i=1,---,d. u; goes linearly from O to 1 as z; moves from the left to the right side of the ith

side of the cell I(k), cf. (2.1). There is no loss of generality in representing the ¢j(z) functions

in terms of uj,- -, uq.

Now turn to the choice of the 2¢ ¢;(z) functions. In addition to ¢j(z) > 0and 3, ¢;(z) =1
we should impose f = fo at the 2% corners of I(k), i.e. ¢;j,,..;,(z) = 1 when (ug,--+,uq) =
(51,°++,Ja), that f is the plain average of the 2¢ nearby corner values at the centre point a,
and perhaps some symmetry. In some sense we want ¢;(z) to measure closeness of z to corner
J.

Our choice is

Ciyyrga(®) = (1 —w) TR0l (1 ug)"Hu e, (2.10)

These functions satisfy the requirements above. More importantly, the algebraic expressions



(2.7), (2.8) for bias and variance simplify dramatically, and IMSE (strictly speaking, the leading
terms of the IMSE) with any other choice of ¢;-functions will be larger than IMSE with (2.10).

Now expressions for

IMSE = E/{f(:z:) - f(z)}zdx=/ Var{f(z)}dz-{—/{bias(z)}zdx (2.11)

can be worked out. It is a matter of checking to arrive at

Z (1) ei(z) =2ui — 1= 2""}; % (2.12)
ﬁ;ﬁ(‘l)"‘”‘c"(w) = (2ui — 1)(2u, — 1) = 42 }; % -"’e_;taz’ O en)
d
> ci(2) = {0 - w)? + o} (2.14)
F1,idd Py
Hence from (2.7)
bias(z) = Z Fi(o)(h? = 3 (i — ai)?) | (2.15)

i=1
and

[ (biss(2)}dz = 3 (Fu(@))? / (24 ~ 2 (mi — ai)*Yda

=1

+ 3" Fula) furla) / (G - 2o - ) HaH ~ 2o - 0}z

1#£L
d
= Z seas MU (@) + 3 oohthifis(a) fula) | o
i#t
Summing over all cells and approximating integrals with Riemann sums in the usual way we
arrive at
d
. 24, - 2
/{bla.s(a:)} dz = 2880 /(f,.) dz
(2.16)
+ Z ohTh} f Fifudz.

i<t
Also, combining (2.8) and (2.14)

/ Var{f(z)}dz = (nhy---ha) ! f(a)(g)"hl cerhg — 1 f(a)?hy---hy
I(k) n



so that .
R 2 :

/ Var{f(z)}dz = (E)d(niu werhg)™l - %/fzdz. (2.17)
Hence an asymptotic IMSE approximation expression has been obtained; see Theorem 1 below.

Remark 1. The choice (2.10) was arrived at by the writer as a solution to the equations
2i(~1)7*ei(z) = 2(zi ~ @) /hi, 1j(=1)7+ci(z) = 4(zi — ai)(ze — ae)/hihe, 1 # £, aiming
at making the bias (2.7) have as small order as possible. He has later learned that in general,
approximating a function in a rectangle by linear interpolation of its corner values, with v;reights
as in (2.9), (2.10), is known in numerical analyst circles as linear blend interpolation. The GFP
we propose is accordingly the linear blend of the ordinary histogram. (Note that the weights

" ¢4,,--,44(z) themselves are not linear in z.)

2.4. IMAD and IAB for the GFP.

We can in addition to IMSE study a criterion related to the L; distance [ | f — f|dz, which
in some ways is a more natural measure, see Devroye and Gyorfi (1985). The expected L,
distance itself proves to be rather intractable mathematically, so we shall be content to study

the natural and statistically mea.ningfu'l upper bound
B [(1/(=) - Bi(a)] +|Bf(=) - £(a)]}dz
- / [mad{f(z)} + |bias(z)||dz (2.18)
=IMAD + IAB,

writing mad{f(z)} = E|f(z) — Ef(z)| for the mean absolute deviation and |bias(z)| for the
absolute bias. Note the similarity of (2.18) to the traditional criterion (2.11).

Sometimes we shall take interest in IMAD and IAB evaluated over some bounded region

instead of over all of IRY.

We shall in fact sometimes only give upper bounds for [ |bias(z)|dz, since exact calcula-
tions tend to be difficult (but possible, as opposed to the exact expected L; distance, which
borders on the impossible), and since the resulting expressions do not convey as useful infor-
mation as the upper bounds. For illustration of this poinf, consider |, () | 2, bz — a;)|dz.
This integral may be explicitly evaluated in terms of by, -,bq and the widths hy,---, hq, but

the answer is less informative and useful than the simple upper bound Ed 1 %|b,-|h,-(h1 -«<hg).



Now consider IMAD and IAB for the chosen GFP. From (2.15) we get

. B d . 1 1
[ Pins(@lldz = [ 1 Fua) g - 5w - e

=1

SN 1., 1 2
<> |fala)l {zh (zi — a:)’}dz

= [a—1h,a+Lin] © P2
a ..
= Zglfa(a)lh?(hl'"hd)- (2.19)
=1
Furthermore,

f(z) - Bf@) = 3 ei(@)(hr -+ ha) M Yolks ) - pol3)}

= ch(x)(hx <+ ha) " No(5)[po(5){1 - po(5)}/n]*/?

. _ . /2
- f(a)l/z(nhl - 'hd)_1/2 2 cj(z)NO(j) [po-;:;zsil . f,-o}(:i)}] 1 ’

writing

N‘o(.‘i) = No(1,+-+,Ja) = [n;;o(.(yl;’{?:p:?;g])l 7 (2.20)

These variables are asymptotically independent and standard normally distributed by a trian-
gular and multivariate version of the Lindeberg theorem, as long as nh;---hy — 0. (Even

though po(s) — O by (2.6) one still has npg(j) — oo0.) They are also uniformly integrable,
since ENo(j)? = 1. Hence

E| an'(z)No(j)l = EIN(O,ZCj(z)z)l = (%)1/2{2 cj(z)*}H2.
This suggests

., madtFeNd = 1@ ooy A [ o S
= f(a)"/*(nhy---hg)™V 2(%)1/ ’ ﬁ /:_:"/:’[{1 — 4(2)}? + wi(2)*]/ ?dz;

=1

d
- f(a)1/2(nh1...hd)-1/2(§)1/2 {%_,_ %l‘lﬂl\%@} hy+ehy

and a corresponding IMAD expression.



For fixed n, hy,---, hq there will always be many cells left with npo(7) = f(a) nh;--
small, even if nhy - --hq is large, so we cannot expect for example E|No(5)| = (2)1/2 to be a
good approximation for all cells. (In fact, about the best one can get is | E|No(5)| — (2)2/%| <
B/npo(5){1 ~ po(5)}]*/? for some constant B; see the Appendix.) The unavailability of a
closed form expression for E|f(z) — Ef (z)|, therefore, will lead to good approximations for

IMAD only if f has bounded support, or if mad{f(z)} is integrated over a bounded region
only.

Theorem 1. Let the density f in JR? have continuous derivatives f,-, f;-,-, }ijk’ and let

hy — 0,--+,hg — O, but nhy--hqy — co. Then for the generalized frequency polygon defined
in (2.2), (2.10):

IMSE = / Var{ f(2)}dz + / {bias(z)}*dz
= (g—)d(nhl---hd)"l— %/f’dz+zmh4/(f")2dz

B DEV Y ER IS, SNSRIt

i<t i=1 §=1
IMAD + IAB= / mad{f(z)}dz + f Ibias(z)|dz

< (2 )1/2{1+—\/—_log(1+\/-)}d( )d/fl/zdz (nh1 +hg)” 1/2

+Z h2f|f..gdz+0((nh1 +hq)~™ +Zh2(nh1 “hg)~ 1/’+Zh3)

=1 =1 =1

The IMSE expression needs to have [ 2 dz, [(f;)2dz, [(fi;)%dz, [ ("f,-j,,)zdz finite. The
IMAD + IAB expression holds provided the integrals are evaluated over some fixed bounded

region contained in the interior of the support of f.
Some details pertaining to the proof of this theorem are given in the Appendix.

Remark 2. The IMSE expression here is better than the one obtained by Scott (1985a,
equation (7.1)) for the case d = 2, since he used a less efficient choice of functions ¢q(z),

co,1(z), €1,0(z), c1,1(z) than the linear blend weights (2.11).

Remark 3. If the support of f is JR? then the IMAD + IAB expression holds over each

bounded region. (Actually, taking resort to bounded regions is only necessary for IMAD,

10



not for IAB.) If f has compact support (but possibly defined only on its interior) then the
expression holds provided only that the functions | f; f;|/f%/% and |f;;|/ f1/2 have finite integrals.

3. Average Shifted Histograms

Consider again a histogram density estimate fo of the form (2.1) in IR%. Choose integers

my, -+, mq and consider the smaller binwidths
6 =hj/m;, j=1,---,d. (3.1)

my +--mq new histograms can be constructed by moving the grid of cells an amount 1;6;,
J=1,--+,d;4; =0,1,---,m; — 1. Scott (1985a) proposes taking the average of these shifted
histograms, i.e.

mi~-1 md—l

A 1 2 .
fasH(@) = e 0+ D fo,shifted ity imtn ()

1 =0  iz=0
f 'ASH 18 constant on each of the many smaller cells of volume §; - - 5-4. Single out one of these,
say Co = (zo — 36, o+ 36] = ?=1(1=0,j —18;, =0+ 15;], and write Y (i) =Y (i1,---,44) for
th; number of X;’s that fall in the cell

Coli) = (20 + (i = 5)8, 70+ (i + 3]

(3.2)
—ng ~ )8, 2o+ (i + 5)8.
Then
mi—1 mg-1
¢ = - N |" |’d| 1 <,13)/n
fasu(z) = (h1---ha) u_;ml ‘d_‘ém( ) (1 md) Y (i1, --,ia)/n  (3.3)

for z in the particular cell Cp; see Scott (1985b, Section 2).

Scott (op. cit.) finds IMSE expressions for d = 1,2, but notes that explicit multivariate
IMSE results are not generally available. His results are complemented below with such d-

dimensional results. The present treatment will differ only mildly from his.
3.1. Bias of the ASH.

Write
o0 = i = (1~ B0 . (1 ) o

11



and let p(¢) = p(i1,--+,1q) = fco('.) fdz. Then from (3.3)

EfASH(x) = (hl"'htd)—l Z w(i1,"',id)P(i]_,"',id),

i.e. the exact expectation involves f-probabilities for (2my — 1)---(2mgq — 1) cells. They are
all contained in a cell with volume 2h;---2hg around zo, however, so approximations to
p(31,++,14) based on Taylor expansion of f around z¢ may still be accurate enough. We

get

pliny ++50)/ (B 62) = / f(z)dz/(61-+-8)

(zo+(— §)8,20+(i+3)5]

d d
. : . 1 - . 1
= f(zo) + Y filzo)i;&; + 3 > fiilzo) (i + 1—2)5,?
j=1 j=1
1 v . 1 d vae 1
+ 2 E sz(zo)iji¢5j5¢ + B Z fjjj (z0) (l? + Zij)s? (3.5)
it i=1
1, 2. 1. 9
+33 ; £ ise (20) G + 35)ied} b0

Z £ jes (20)8i5858;6¢6,.
4,¢,s distinct

+

| =

Notice for the following that w(s)/(my-:-mg) = H;l:l 'an, (1 - 13{’—') defines a probability

distribution for (11, -,44) over I’[?=1{1 —mj,+++,0,++-,m; — 1}, with ¢4, -+,{4 independent,
with odd moments equal to zero, and with £(i;)? = %(m? — 1). Using this we obtain, for

z € (),

Bfasu(@) = 3 mlu.)f’:)md 51’?(.i.) 54
t1,%d . . ) . . d (3.6)
= 1(@0) + 5 2 fis@o){5(m} = 1)+ )6} +0 (Z 5;) :
i=1 j=1

12



After subtracting a similar expression for f(z) we obtain an approximation for the bias:

d
Efisu(z) - f(z) = - Z fi(z0)(zj — z0,5)

1.1
+ fJJ(‘”O){(m - 5, - —(z, — z04)%}
Z 2/12 .
) Efﬂ(zo )(z; = zo,;)(ze — Zo,e)
J#l
8 Z tha (zo)(z; — zo,;)(ze — Z0,6) (s — Z0,s).
Jta

Hence

d 2
{bias(z)}? = {Z fi(zo)(zj — zo,j)}

=1

. 2
I:E fii(zo){(m? - 5 Efsf -;-(z,- - xo,j)z}]

{Z fie(=o)(z; — z0,5)(ze — o t)}

Ji#t

d
-2 {Z f;'(:to)(xj - zO,f)} [Z fn(zo{(m - '2-)1—2'5} ( - mo,j)z}]
j=1

i=1

d
+ {Z fi(=o)(=z; - 20,:‘)} {E fie(zo)(zj — %o,3)(ze — zo,e)}

1 i#L

d
l;: fii(zo){(m? - -)}55 - (z‘: - Zo,5) }} {ije(%)(zﬁ — 20,5)(%¢ — Io,z)}

it

i=1
d see
+ % {Z fi(zo)(=; - ’O,J‘)} {Z £ jes (%0)(z5 — 20,5) (2e — 0,¢) (25 — xo,,)}
j=1 5,48
d see
% {Z fii(o)(m} - 5) 155 } {_-,;. £ jes (z0)(zj — 2o,5)(ze — z0,0)(zs — 20,.)} ;

shaving off higher order terms.

13



Next integrate this over Co = (z¢ — %6, zo + %5] Many details later one gets

[ tiatayias = [Z filw)? 207

+ Zf'}j(a:o)zms,‘{( m = 2 = (md = 3) + 30

+ 3 (o) o) gy 8263 (m — 1)(m - 1)

j#L
+ 5 ;f:t(xo)z i 5767 + Zf,(xo) f”J (:1:0) 540 e
+Zf.1(z0) f;a (z0) = 144 ,5¢]51 -64.

J#e

Summing up over all cells and using §; = h;/m; we arrive at

. 1R
/R‘{blas(z)}z dz = gﬁ;’? /(fj)zda:
d L1441
+§h4[144{(1 2m 2)(1 ) 320 4}‘/.(f11)2dx+ 240 m /fJ fJJJ dx] (3.8)
+Eh2h¢ 1 m)(l - ?)/f:‘:’fadﬂ:

raa O
_1?_'/(th 2d:z:+ /f, f,u d:t]

Somewhat hidden here is the surprising fact that {5 5} >k fj (zk)?61 - - - 84, where the sum is over
all cells, does not contribute to the §2&; or 6} terms, in fact 3-, fi(z1)261 64 = [(f;)?dz +

O(63 + -+ -+ 63), see the Appendix.

(3.8) can be simplified further if f is assumed to go smoothly to zero at infinity so that

J az {f,(z)f,,(z)}dz = 0 (then ff: f;m dz = — f(f,,)zdz) f ai,{f: (x)fJg(x)}dz = 0 (then
ffJ f,a dz = “f th)zdz) f ait{fn(“’)ft(z)}d‘” = 0 (then ffn ud” = f(f:t)zd-"’) In this

14



case

f {blas(z)}* = Z / (f3)?ds

31 "

—h4 L2 2

+z 144 J §+ 5m14)/(f”) d:l:
1 1

J#t

15

1. 1 “ e
A4 2 8 T T B —— ‘.
+Z 144h1h m? mg + 2m§m§)/f“f“dm’

(3.9)



3.2. Variance of the ASH.

From (3.3), (3.4), (3.5) and using multinomial moment formulae one gets
Var{fasp(=)} = (- 3wl 2pGHL - pli)}
~ (k)Y el 2p6)p()

(51,584)
#("’ 1"'!'.' )

. . . 2
— (nhy -+ ha)- lzm:»(e r 5lfo(z)ﬁd_%{z w(i) p(')ad}

mlacnmdslo.-

= (b oh) L fI(1 "'){f( D+ fi @it}
nny- A i\Zo)t5

.1-1 j=1

- ‘3‘ [Z w(z) {f(zo) + z fi(=0)i;8;

i=1

1 ; PR | . o 2
t2 ; fii(=o) (i + 15)8 + 3 Z fjt(xo)tjnﬁ,'&z}]

i#t
aefz 1Y, 1 “--1,122
= (nhy - hq) E §+§;Jg‘ f(xO)—; f(10)+j=zlfjj(20)ﬁ(mj_§)6j .
This leads to

fc Var{ fasp(#)}dz = (nhy -+ -ha) (2 )d” (1+ )f(a:o)61 Sa—;l,ff(zo)zal---sd
(1] j=1
(3.10)

and, combined the the conclusion of the preceding subsection, the IMSE expression reported

in Theorem 2 below.
3.3. IMAD for the ASH.

We look for a suitable expression for IMAD = [ E|f AsH(z) - E f AsH(z)|dz, and again
start out trying to evaluate the function over the single cell Cp, on which f ASH has the constant

value (hy-:-hg)~ 13, w(i)Y (¢)/n, cf. (3.2)-(3.4). So

fasu(®) — Efasu(z) = (h1-+-ha)™ Z W(i){;l;Y(i) - p()}

np(s {1 — p()}Y/? (3.
= (h1-+-ha)” lzw(t) - (‘)({)1 pl("();ll/z [p(9){1 \/g( B2 (3.13)
=n 1/2(61"’5d) 3/2 ZO,n,
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where

Zon= 3 2L NP6 (1~ p) (o1 50) (5.12)
and
NG) = (Y 6) - np)}/ () {1~ )2 (3.9
It follows that
/c E|fasu(=) - Efasu(2)ldz = (né1 -+ -62) /2 E| Zo,0l. (3.14)

Now Zo,, has variance

wa)mmpmma)zwwﬂmwm 54)

I3y

_ b1---d4 w(i N w(i) ’ 2 .
‘mmmﬁmwﬁw{zg—ﬂ@ 3

= f(ZO)(sl . ‘64)2m ']'.'md z w(‘) - f(xo) (51 6d)3

my -
= f(zo)(é1-- 54)2 ( )"'H (1+ ) ,

using (3.5) once more. np(s) = f(zo)ndy - -84 — oo under the standard assumptions. Hence
N (1) is asymptotically standard normal, and the ?___1(2m,~ — 1) N(5)’s that are involved in
Zo,n are asymptotically independent, as the variance computation above also indicates. Hence

Zy,n is approximately a zero mean normal random variable, and we should have

. L2
E|Zo| = (>)'/*(Var Zon)'/?
4 1/2
.2 ~1/2(2 1
= (;)llzf(fco)l/z&---5d(m1"°md‘) 1/2(5)‘1/2,1;11 (1+ 2m§) ’

and accordingly, using (3.14),

j=1 J

1/2
/ mad{fagy(z)}dz = (nhy---ha)~ 1/2( )1/2( )4/21'[( 212) fz0)Y/28y -+ - 64
~ (3.15)
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Summing over all cells

: 9 2 d 1 1/2
f mad{fASH(z)}dxﬁ(nhl---hd)*”(;)‘/’(g)“/zH(Hm) / Mz, (3.16)
j=1 7

The reasoning above was only suggestive, and several details must be carefully checked
in order to establish (3.16) in a precise fashion. These details are dealt with in the proof of

Theorem 2 in the Appendix.
3.4. IAB for the ASH.

We already have the expression (3.7) for bias(z) = Efagp(z) — f(z). If m; > 2 then
(m? — 33567 > 3(z; — 20,;)* when z € C;. Hence

[ tis(e)ias < / 132 oo — a0,

0 j_

f 13 Fstao o - L7 - Loy = aa e

0 J‘__

/ Zf:t(zo)(z, zo'J)(xt To t)ldz

Co jze
+5 |13 Tre (0)s = 0@ = 20(s = 50,)1dz
Co ERA
d
+0 (Zs}) by-e-bg < Zlf,(zo)| 8 by--
i=1 j=1
+ ; |f33(=0)|{(m} — —) 125,’ - ﬁ5f}51 ERLF
+5 Z|f;¢(zo)| 5¢ ATy
J#t
+O(51 ++83)E| fjta ($0)|51-°-5d
7,8
Accordingly
us <315 | |f:|dz+2ﬁ5:2( -0 [Fde+ 3 gy | Vld
:—1

- 1 h; he
—Z{ flf:ld + uhf( —2) /Ifjjldw}+zﬁ;n—;n—flf:cldz,
™m; Ji#L
ignoring higher order terms.
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Theorem 2. Let f have continuous partial derivatives to the fourth order, and assume
that all the functions |f;, |fd, | :f"jz, ls | ‘}.jm |, and their squares, are integrable. Assume
also that f goes to zero at infinity smoothly enough to ensure f( j"',-g)zda: =f f,, fuda: =
— [ f; :f"ju dz. Then for Scott’s average shifted histogram defined in (3.2) and (3.3), as

hy =myé; — 0,--+,hg = mgbs — 0, n51---64—>oo,

1-1 m m?

1 1 1 1 .
+ _hz —-—+3 /fj'fadz
; 144 7 ( mf m? 2 m?mf) 1

DL P

toSS ey M)

o m; = nhy...hq

- Furthermore, over each bounded region where [ |f;¢|/f 1/2dz is finite,

d ' 1/2 '
IMAD + IAB < (nhy.--hg)"1/? 2y1/2(2yd/2 1+i Y%z
T 3 2m?
= J

/|f1|dz+212 ]( %i)/lfuldx
3

1 hj ke Sk K R miemd
+# ﬁ;;;/lfatld“"*‘o (Z;ﬁ;nhl...hdmhl...hd .

4. Generalized Frequency Polygons of Average Shifted Histograms

The average shifted histogram is

fasu(@) = (ha--ha)™ D wlin,-,ia)Y (i, +5ia) /m

$1,8d
for each = € Cgy = [zo — 16, zo + 36], where Y (i1, - -,44) = Y (i) is the number of observations
falling in Co(i1,---,ia) = Co(¥) = (z0 + (i — 1)6, zo + (i + 3)6]. In order to construct the
generalized frequency polygon of f 'ASH We should interpolate between 2¢ neighbour values of

f 'ASH- Consider therefore the 2¢ ASH-cells Co(J1,-++,J2) = (zo + (5 — 18, o+ (5 + )4,
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J1,°++, 34 € {0, 1}, and shift attention to the inner cell

1
CS=(3:0’ a:0+5]=(a—§'5-, a+—2-5],

(4.1)

where a = zg + %5 is the centre point of this new GFP-ASH cell and at the same time in the

middle of 294 old ASH-cells.

X

& N =g

X0,i 34 %p,i%Sy

ANVANIAN «%9,5 7%

Figure 2. The GFP-ASH cell lies within 2¢ ASH cells. f 'ASH(2) is defined, for each of these
cells, as a weighted average over (2m; — 1):--(2mq — 1) ASH cells. This is illustrated with

m; = 2 and m; = 3 above.

Define, then, for z in Cj,

foFp-asa(@) = D ciii(z)fasH (%01 + 5161, -+, 20,4 + Jaba)
J1y00dd
mi—1 mqg—1
= (hy---ha)™! z Z Z w(iy, -+, 84)Y (j1 + 11,
Jiyndahr=1-my t4=1-myq
my mg y
= (hy---hg)~? Z E T(ty,--, L)Y (&1, -, L) /n,

H=1-m,; lyg=1-my

20
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where w(i) = Hg:l (1 - 1:;"}) as in Section 3, where
ci(z)=(1- ul)l—jxuyl'x (1 - ud)1—jdu£d

as in Section 2, but now with

1
ty = ty(z) = (2v — Z0,0)/5, =§+(2:.,—a,,)/6,,, v=1,---

and where finally

T(8) =T (s, -, L)

2. 2

= f1,8d J1,edd w(’l’ T ’d)cjh"'yjd (Z)
N ‘-v+jv=t|n ”=11"'»d

= Ti(b) -+ Ta(4a),

with

i Py
ne= ¥ (1-Ea-wpeg
1~my<ip <mo—1 v
0<ju<1
fot+io=lo

=(1-uy) (1_|;n£_v_|) + uy (1'—- I—-eﬁ——i'), £y=1—my, -, m,.

my

4.1. Bias of the GFP-ASH.

(4.3)

(4.4)

(4.5)

(4.6)

The expectation and variance of fGFP- ASH depend upon the cell probabilities p(£) =

fc'o(e) [ dz.. These were studied in (3.5), but it is now more advantageous to Taylor expand f
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around z = a:

4 . 1 .
Pl = /(a+(e-1)a,a+w] {f(a) M ; fula)(wi - ai) + 2 %: fii(a)(z: = ai) (5 — a5)

+ %E 'fija (a)(z:i — ai)(zi — a;)(z, —as) +-- -}dx

d
= f(a)b1---6a+ Z f:i(a) zidz

((e-1)s,5)

=1

1 o
sfdz+ 2> fij iz d 47
(¢-1)é,¢6) * 2 75 fJ(a) ((¢—1)8,¢5) wE 4T ( )

1 d
+§§fee(a) (

d
= f(@)+8a+ D o) (&~ 5)6 (61-0-83)

=1
d
+Y L@@ -+ D)6 (51---50)
=1
+ 3 SFla) 6 - 8 38 (618,
i#]

Some exercises in_ algebra yield Ezél—m.- Ti(&) = m;, Z‘-: 1y (& - %)T.-(Z,-) = (u - %)m.,
and 3274 (& - & + DTi(&) = L(m? + 1)m;. All this leads to

4i=1-m;

EfGFP-ASH(z) = (hy-- .hd)—l E T(ly,---,La)p(t1,- -, L4)

y,,8g

d
= Bt o oma 3 )~ P

d
1. 1
+ D 5 fila)g(m? +1)8F my---mg

=1

+ 30 3 Fs(a) = F)(us = )8 my o]
i

d d
= fl@) + 3 fla) @i — ) + Y 5 Fis(@)g(m? +1)8?

=1 =1
+ 23 Fiso) (o — ai)(zs ~ a5),
i#5

- using (4.4) and remembering §; = h;/mj, 5 = 1,---,d. Subtracting a Taylor approximation
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for f(z) we have arrived at

bias(z) = EfGFP AsH(2) - f(2)

= Zf..(a){~(m +1)8 - 3lm - 0.

=1

(4.8)

We could actually have reached (4.8) more directly, perhaps recycling the efforts of Section
3 better, cf. (3.5) and (3.6), but the representation (4.2) is in any case needed in Section 4.2

below,

From (4.8) one gets

1 1
/(a--;-s, Lk Zf"(“)zf Tz + 0 - gey e

2

+ 2 fs@fii(a) / {12( md + 1)6} = galH g5 (md + 08} - Jal}ds

-#:

= Efs‘.'(a)214454(m +m? + —)(61 64)

=1

1
+ é;fu(“)fn(a) 1445252('"? + 5)(”‘? + 5)(51 -+ 84).

Summing over all cells and approximating integrals with Riemann sums as usual, and using

8; = hj/mj, we reach

d
[ ins(a)ydz = > bt (1 - 9—,{?) [Gayras
+ Z mh?hf ( 2:1’2) (1 + ﬁ) /f;s'fjjda: (4.9)

i#j

2
1 d 1 - 1 h4 .
~ 144 {;h? (1 + zmg) f“} dz + 'Z 290 nt /(f..) de.

4.2. Variance of the GFP-ASH.

fGFP— ASH(z) is a linear combination of f ASH (%o + 76) values, and its variance involves
cov{fASH(xo + 78), fASH(xO + 5'6)}, 7,5 € {0,1}%. It is most convenient to use the repre-
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sentation (4.2). We get, for z € (a — 16, a + 36|,

Var{ fqpp.asg(2)} = n" (k- ha)"2 > T(&)*p(8){1 - p(£)}
tly'")‘d

—n YAy ha) 2D T(OT(£)p(Op(E)

Y

=) 3 D PO () S TR
¢ ¢

Lee mgdy---

(4.10)

One may show that

&ﬂiim‘n(&)z =(1-w)? h:zn—fm,- (1 - %)2 +u? ¢=1§-‘:,...- (1 - Iir;—l')
t 2wl - w) z=1§_im; (1 _ ’In‘il) (1 _ |£';1|>

= {2m? + 1 — 6u; (1 — u;)}/3m;.

Hence, since p(£)/(61-+64) = f(a) by (4.7),

y d
/(’ Z T()? p(9 d = /' H 2m? +1 - 6;1.‘-(1 - ;) dz £(a)

a-36,a+6] 7 ™M1 rmaby-e-ba [a~36, o+ 16] i 3m?

d
= [[{(2m? + 1 - 1)/3m?}6; £(a)

=1

= (-z_)df(a) 8y -64.
(4.11)

Also, 3°,T(€)p(€) = my---my f(a) &1 ---8a, so that {(h1---ha)"1 25, T(O)p()} = f(a)®. Tt
follows that

f = (%)4 cm) oL [
/( 5.tk Var{fgrp-asH(z)}dz = (3)*(nhy -+ -ha) ™" — ~ / fidz. (4.12)

4.3. IMAD of the GFP-ASH.

From (4.2)

fGFP-ASH(=) — Eigrp-asu(=) = (b -+ -ha) ™ S TOY (9 - 5(0)}
L

-1 V(9 -np() [p(O{1 - p(8)}]"?
= (nhy -+ - hq) /2 ;T(Z) [np(&){1— p(OY172 (hy---ha)' 2

= (nhy - -ha)"Y?Z(z),
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say, z € (a — %5, a+ %6] , where, reasoning as in 2.4 and 3.3, Z(z) is approximately normal
with zero mean and variance

ot(z) = %:T(e)z_hﬁ(-e-)hd =3 T(? _»p(8)

- my---mg6y---63

d
= f(a) [T{2m? + 1 - 6ui(1 - w)}/(3md).

=1

This suggests E|Z(z)| = (2)'/20(z) and

/ E\forp-asu(®) — Efgrp-asu(®)|dz
(a— -21-5, a+-;-6]

= (nhy -+ ha) Y22 §(a)2 fI / e [{2m? +1 - 6ui(1 - w)}/(3m?)|/?dz; (4-13)
T i=1 a;— 3%

= (nhy - .;,(,)-1/2(%)1/2}'((,)1/2(51 cee83) J(my) -+ - J(ma),

where L '
J(mg) = /o {2m? +1 — 6u(1 — u)}/2du/v3m;
1 4m? -1 3124 (4m? +2)1/2
12m? 8v/2m; (4m? — 1)1/2
(J(m;) is amazingly close to its limit value (2)!/2 already for m; = 3.) Accordingly

(4.14)
)1/2 +

= (% + log

IMAD é(nh_l-'-ha)‘l(%)ll ’ / fMrdz J(myq) -+ T (ma). (4.15)
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4.4. IAB of the GFP-ASH.

From (4.8) it is clear that
bias(z)|dz < (a / m+152-——a:2d
A=t Zlf,( [ ol + 08 - by

= Zlf..(a)l b1---84 —52('" )
and in its turn .
1 1 .
IAB < ;ﬁhf (1+ 2—",'2) / lfg'.'ldm. (4.16)

Some of the details that remain in order to actually prove the following theorem are available

in the Appendix.

Theorem 3. For the generalized frequency polygon of the average shifted histogram:

IMSE = (E)d(nhl---hd)"l - %/fzdx
"'Z Taa™ ( m? 91%) / (fu)?da
+Z—h2hz( 21?) (1+ )/f.,f,,dz+o (Z +Znh1 )

i<y =1

IMAD + IAB < (nhy -+ he) H2(3)V2 / Y2z J(my) - -+ J(ma)

+Z—h2 ( ) /|f.,|dz

h3 h 1
+0 (E +E (nh1 hd)l/z hd) .

=1

It is assumed that f has third order continuous derivatives. The IMSE expression holds when
2 ( f;)z, ( ).’.,',-)2, (.f"c'jk)z have finite integrals. The IMAD + IAB expression holds over each
bounded region where f, |fi|, |fiil, | }.’jk |, 1£i1/FY2, | fi£;]/ £3/* all have finite integrals.

We remark that the IMSE expression obtained here is better than the one obtained (for

d = 2) in Scott (1985b, Theorem 4), for his version of bivariate frequency polygons of average
shifted histograms.
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5. Discussion.

We have obtained results for IMSE and for IMAD + IAB for natural generalizations of
histograms. Some consequences of these results will be briefly discussed in this section and

comparisons with kernel type density estimators will be made.

The papers of Scott (1985a, 1985b) have provided the inspiration for the present paper.
We have been able to improve and generalize his results somewhat, but the basic statistical
and practical issues remain the same, and Scott’s discussion of these points are valid also for
this paper’s density estimators, with few exceptions and minor modifications. The reader is

therefore referred to the above mentioned articles for fuller discussion.

5.1. Comparison with kernel density estimators.

The kernel density estimators are the most usual alternatives to histograms. They are of

the form

n ) .
f'(z) = %;K (au —hIXm’_ .. T ;dXi,d) /(hy-ha), (5.1)
with the kernel K a function on JR®. Usual requirements are that K is nonnegative and inte-
grates to one, and that it is symmetric; K(uy,++,uq).= K(e1uy,+ -+, €quq) for all €;,-++,€4 €
{-1,1}. It is also customary to have h; = --- = hy, and to employ product kernels, i.e.

K(u1,---,uq) = Ko(u1) - - - Ko(uq) for some univariate kernel Kj.

It is interesting to compare the results of Theorems 1, 2, and 3 with corresponding expres-
sions for a kernel density estimator. If K is nonnegative with integral one, and [ u; K (u)du =0,
r? = [u?K(u)du, [uu;jK(u)du = 0 for i # 7, and [ K(u)?du is finite, then one can show
that

. 2 -1_ 1 2
IMSE =/K du (nhy«--hg)™" — ;/f dz

., |
Yot [+ g [ Fufias

=1 $#£5

(5.2)

d
IMAD + IAB g(%)l/z( / K2du)'/? / fVdz (nhl---hd)‘1/2+2%h?rf / |fildz. (5.3)
) =1

(5.2).is a natural generalization of the classical univariate result of Parzen (1962); see also

Epanechnikov (1969).
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Let us also write down the results for the ordinary histogram fp of (1.1):

d
IMSE = (nhy---hg)~! = -1'; f fzda:+2%hf / (f:)?dz, (5.4)
=1
d
IMAD + IAB §(%)l/2/f1/2da: (""1"‘hd)“1/2+22hs/|fs|d2- (5.5)
=1

These can be obtained by the methods of Section 2.

The advantage of passing from fo to the more sophisticated kernel estimator is that the
bias is of a smaller order. The rate at which IMSE for the histogram goes to zero when
the best values for hj,--+,hq are used is n~2/(9+2) whereas IMSE of (5.2) can attain the
rate n=4/(4+4), The same phenomenon is illustrated using the IMAD + IAB criterion. If
hi = ain™®, ¢ = 1,---,d, then the best choice for a in the histogram case (5.5) can be seen
to be 1/(d + 2), and IMAD + IAB has rate n~1/(4+2), For the kernel estimator case (5.3)
a = 1/(d+ 4) is best, giving IMAD + IAB a rate of_n_‘z/ (d+4),

It is clear from these considerations and from Theorems 1, 2, and 3 that both the GFP
and the GFP-ASH achieve the same favourable rate as the kernel estimator, i.e. n=4/(d+4)
for the expected L, distance and n~2/(9+4) for the upper bound for the L; distance. They
therefore offer sﬁbsta.ntia.l (asymptotic) improvement over the ordinary histogram. The ASH
does not quite achieve the same kernel estimator rates, but for the finite n statisticians are
faced with the constants accompanying n~2/(4+2) and n—4/(4+4) determine everything, and
it is evident from Theorem 2 that the ASH produces IMSE and IMAD + IAB that match
those of the kernel estimator, i.e. (5.2) and (5.3), even for moderate values of m;. This is no
coincidence; Scott (1985b) observes that the ASH of (3.3) is close to the kernel estimator (5.1)
with K(u) = [T%,(1 — Jui|)I{Jwi] < 1}, the product triangle kernel. Indeed (5.2) and (5.3)

result if we let the m;’s grow to infinity in the expressions of Theorem 2.

f 'ASH ©f (3.3) can be seen as a computationally convenient approximation to f* of (5.1)
with K the product triangle kernel. This points to the possibility of approximating other
kernel density estimators in the same manner, using a different weighting scheme than (3.4).
Such an approximation works directly with the binned data, and the computational burden is

almost independent of the sample size n of the raw data. In an example Scott (1985b) reports
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on this meant reducing CPU time from hours to minutes.

Scott (1985b) notes that even small to moderate values of the m;’s are effective in elimi-

nating the portion of the bias that stems from binning the data.

Thus f ASH> and relatives, are convenient approximations to kernel estimators, and are as
such similar in spirit to the discrete Fourier inversion method introduced in Silverman (1982)
(see also Jones and Lotwick (1984)). This technique works for a Gaussian kernel. It is unclear

how practical that method is for high-dimensional data.

The GFP-ASH is an interpolated version of a kernel estimator approximation for binned

data; see Scott (1985b, Section 6) for further comments.

Finally, it should be pointed out in this subsection that fo, fGFP’ f ASH> and fGFP- ASH
in fact all are kernel estimators, but with complicated kernels, being only piecewise continu-
ous, and not all of them symmetric; see Walter and Blum (1979) and Scott (1985b, Section 3).
Another way of obta’.ininé Theorems 1, 2, and 3 would conceivably be to determine these under-
lying kernels explicitly, then prove precise versions of (5.2), (5.3), but for piecewise continuous

and nonsymmetric kernels, and then evaluate the appropriate terms.

5.2. Choice of smoothing parameters.

It is natural to choose smoothing parameters so as to minimize the leading terms of either

the IMSE or the IMAD + IAB, see for example Freedman and Diaconis (1981) or Scott (1985a).

Consider, for example, the generalized frequency polygon of Section 2, and let us for the
moment adapt the L; view that led to IMAD + IAB as a natural criterion. The leading terms
are of the form

d
Ag(nhy---ha) ™M+ " AR,
=1
for constants Ag, Aj,: -+, Ag determined by f. Setting partial derivatives equal to zero one
finds that the best choice for hy,--+,hq is

hi =h} = (%)4/(d+4) AV (4, . 4) /U 47121 (d44) I(5.6)
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With this choice,

IMAD + IAB < {2%4/(d+4)

+ d(%)S/(d“)}Aé/(““)(Al .. ,'Ad)l/(d+4)n—2/(d+4) + O(n‘s/(d“)). (5.7

Since Ag is proportional to [ f1/2dz and A; to [ | ).’;-,-Id:z:, it emerges that

A(f) = {(/ f1/2d1)4/ Ifuldz.../ |fdd|dz}1/(d+4) (5.8)

is a natural measure of how difficult a particular f is to estimate using a generalized frequency

polygon.

Exactly the same reasoning is valid for the GFP-ASH and for the kernel estimator f*. In
both cases h; should again be taken proportional to n~1/{+4) and again A(f) of (5.8) appears

as a natural measure of the difficulty with which f can be estimated.

Of course Ag, Aj,- -+, Aq will be unknown, and a natural way to proceed is to estimate
the needed quantities [ f1/2dz, [ | fuildz, -, I fddldz based on the observed data, and plug
in estimates in (5.6). The estimation can be performed nonparametrically, using perhaps a
separate kernel estimate or spline type estimate of f, and perhaps with separately determined
smoothing parameters, for this purpose. Another possibility is to fit perhaps a rough para-

metric model to the data, and estimate [ f 1/2dx etc. using parametric techniques.

To get a possible benchmark for the choice of Ay, -+, A4, asume for the moment that f is
Ny(u,3). Clever computations give [ f1/2dz = 234/4x4/4|5|1/4 and [ |fi;|dz = o%4e~1/2/
(27)Y/2. The leading terms for IMAD + IAB are of the form discussed above for both the GFP
and the GFP-ASH, with Ag = (2)Y/2B, [ f'/*dz, A; = B; [ | fii|dz. One arrives at

! = Bg/(<7l+4)(131 .. ,34)1/2(d+4)3i—1/2Kd (|Zjott - - ,044)1/2(d+4)(au)—1/2n—1/(d+4)’ (5.9)

where

Ky = 23(d—4)/2(d+4) £d/2(d+4) 1/ (d+4),

For the GFP, By = b3 and B; = %, where by = % + ﬁ;log(l + \/L—’) The cautious recommen-

dation is therefore to estimate & = (0;;) in some robust way, and use

R = bgd/(d+4)23d/z(d+4)7rd/z(d+4) g1/ (d+4) (ISl add)1/2(d+4)(o.ii)—1/2’;—1/(d+4)_ (5.10)
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For example, A* = 1.5510n~1/5 can be used as a starting value for A for the univariate
frequency polygon. For the GFP-ASH, on the other hand, By = J(my)---J(mg) and B; =
i3 (1 + 5-'1;‘;) . Let us only give an answer for the case that By = (2)%/2 and B; = L are good

enough approximations (moderate m;’s will do). Then
R} = 9(8d—4)/2(d+4)g—(d—2)/(d+4) zd/2(d+4) g1/(d+4) (|2|a11 .. _a.dd)l/2(d+4)(o,ii)—l/zn—l/(d+4).

(5.11)

In the one-dimensional case h* = 1.8290n~1/5,

Similar reasoning can be used for the IMSE criterion. The typical IMSE has leading terms

of the form
Ao(nhy---ha)™1 4+ AijhihZ,
i.4

see Theorems 1 and 3 and (5.2). Put h; = a;n~2, so that the IMSE becomes Ag(ay---a4)~!
n-(1-da) 4 2 Aijalain*®, The best choice is again o = 1/(d + 4), giving

IMSE = {Ao(a1-+-aa) ™1 + ) Aijata}n=4/(+9) L O(n=5/(3+4), (5.12)

.5

ay,*-+,aq remain to be specified. The values that minimize the expression in the brackets
cannot be found in closed form solution (for d > 3), but can be found numerically for given
values of Ag, A3, -+, A4q. This requires the (first stage) estimation of the unknown quantities
f (fic‘)zda:, J f,. f;-jdz, by parametric or nonparametric methods. For example, if f is Gaussian
with covariance matrix £, then [ f;; f;;dz = (2x)~9/3(3)4/2|2|~1/2{}(0%)2 + 14% 077}, and this
may be used to get at least starting values for hy,- -+, h4. Comments about this are in Scott
(1985a); here we shall only remark that this procedure, for the univariate frequency polygon,
leads to h* = 2.1530n~1/5, which can be compared with h* = 1.5510n~1/5 obtained above

with the Ly view.

Scott (1985b) also discusses other methods of determining the smoothing parameters.

5.3. Concluding Remarks.

The previous subsection outlined how IMSE and IMAD + IAB expressions could be used

to provide choices for smoothing parameters, i.e. window sizes for our generalizations of
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histograms. In particular, it was seen that the natural IMAD + IAB criterion gave the more
explicit recommendations, and also led to the reasonable measure (5.8) of how difficult the
f at hand is to estimate. It is interesting to contrast these results with similar ones for the
ordinary histogram (1.1), and for which we have already noted (5.4) and (5.5). Without going

into the details, let us mark down that the best choice for hy,--+,hg is

7"_ = 23/(d+2)1r—1/(d+2)(/ fl/zdx)z(/ |f1|d3' . / lfdldz)l/(d+2)(/ |f,~|da:)_1/2n_1/(d+2)
(5.13)
based on the IMAD + IAB criterion, and that-

AN ={([ 11724 [ 1fulda--. [ \fahas} e (5.19)

emerges as the reasonable measure of difficulty. If f is Gaussian with diagonal o?,-- -,ag
covariance matrix, then

If the IMSE criterion is used instead, then

Z,' - 61/(d+2){/(f1)2da:- i -/(fd)2da:}l/z(‘“'z){/(f;)zdz}—llzn—ll(d+2) (5.16)

is the best choice. For the Gaussian case
hi = 61/(4+2) (27)8/(4+4) /(| o 11 .. . o981/ (84 4) (g 11)~1/2,,-1/(d4)

~ 3.50(|S|o 1t - - o)1/ (28+4) (0%)~V/2n=1/(342) (5.17)

Is it sensible to choose window sizes and smoothing parameters on the basis of IMSE and
IMAD + IAB? IMSE, for example, is really the expected loss ISE = [( f — f)¥dz. One can
show that ISE/IMSE tends to one in probability, for all the estimators considered in this paper.
This lends credibility to this criterion, and a similar justification can be given for IMAD +
IAB. The rate at which ISE becomes close to IMSE may be slow, however; for example, one
can show that n4/(24+4)(ISE/IMSE - 1) has a limiting normal distribution in the histogram

case, and that nd/(2d+8) (ISE/IMSE - 1) has a normal limit in the kernel estimator case.

Let us point out that it makes perfect sense to use for example the IMAD + IAB criterion

over some specific region as a means of obtaining smoothing parameter values; the reasoning
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of 5.2 can equally be applied. A more sophisticated procedure that, however, would compli-
cate computational matters would be to use locally varying hy,-:-, hq, say. These could, for
example, be specified at a point z as the ones that give minimum IMSE (or estimated IMSE)

in a ball of some fixed radius around =z.

We have demonstrated that simple and computationally efficient variations on histograms
can match for example kernel density estimators in performance. It is probably fair to point
out, however, that bbth kernel estimators and the density estimators proposed in the present
paper would have severe difficulties in being “statistically efficient” for anything but well
behaved densities in higher dimensions, say for d > 6; they would require enormous sample
sizes to detect possibly finer and interesting structure. One might turn to estimators based on
p'rojection pursuit methods, for example, to cope with such problems, see Huber (1985). One
can hope, however, that methods like the GFP and the ASH can be useful as building blocks
in such a more sophisticated set-up. Imagine, for example, that a “transformation pursuit” _
method was put to work on some six-dimensional data, and ended up giving a transformation
from (Xi,---,Xs) to (Y1,--+,Ys), say, having the property that (Y;,Ys,Y3) and (Y4, Ys,Ys)
become practically independent. Then the GFP-ASH could be used to estimate the densities
of (Y1,Y3,Y3) and (Y4, Y5, Ys), in a computationally and statistically efficient way. Then finally

the density f for the original (Xj,-- -, X) is obtained by inverse transformation.
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Appendix

Behind the statements displayed in Theorems 1, 2, 3 were a variety of Taylor expansions
and approximations of integrals to Riemann sums. A more careful study of the remainder

terms involved is called for now in order to actually prove the theorems.

Sometimes calculating the “next term” in an expansion, assuming the needed extra
smoothness, is more informative than a proof, consisting as it must of bounding various re-

mainder terms. This is done in a couple of instances below.

We shall have occasion to use a multivariate version of what Scott (1985a, p. 349) calls
the generalized mean-value theorem. Let g be nonnegative and continuous on a cell [a,b] =

:-i=1[a,~, b;]. If ¢ is another continuous function on the cell, then

/[‘a,b] p(z)g(z)dz = p(z*) /[;,b] g(a:)-dn: | (A.1)

for some z* in [a,b]. This can be proved as follows: Ii; is trivially true if f[a,b] gdr =0, so
assume go(z) = g(z)/ f[a,b] g dz is a density on [a,b]. Then (A.1) amounts to Ey o(X) = o(z*)
where Ej is expectation w.r.t. go. But ¢ carries the convex set H;Ll[a,-, b;] onto an interval,
say [¢,d], and Ep p(z) must be somewhere in that interval. (A.1) is also true for a nonpositive
g but not necessa.rily for g taking both negative and positive values. (For example, fjl z? dz #
z* [1 z dz.)

A second fact to be used repeatedly below is given in the following lemma.

Lemma A.1. Assume g : JR® — IR and its first order partial derivatives gq,---,gq are

continuous and integrable. Then

3 d. :
Zg(fk)hl cechg = /g dx+0 (Zh,/lg,ua:) ’ (A2)
k =1

where the sum is of over all cells, the union of which is IR?, each cell has volume h; - - - hq, and

&x is an arbitrary point in cell number k.

An explicit and generous bound is available if the mixed higher order derivative g1...q(z) =

(8%/8zy - - -dz4) g(z) exists, and all the functions g;;(z) = (8%/9z:3z;)9(z), { < 7; gijr(z) =
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(83/8%;8z;0zk)g(x), ¢ < § < k-, g1..4(z) are integrable. In fact,

|> 9(€)ha---ha— [ gdz| <Y ki | |gldz+ Y hihj [ |gild
Zk:kl.d/zzi:/ngJ/ng

= (A.3)

+ > h.-h,-hk/[g.-,-k|dx+---+ hl---h4/|g1...d|dx.

i<i<k

Proof: Consider a cell []¢ (@:, 5] = I and an arbitrary point £ = (&1, -+, &) in it. Then

=1

d
9(2) ~ 9(8) =D {a(&r,- -+, &i1, Tiy Tiwr, -, 7a) — (€1, ++, &im1, &ir Tin1,+++, 7a) }

=1

d z;
=Z‘/; g'.(sl"")Et'—l’uiazi+1,'",xd)du,‘.

1=1

Hence, using Fubini’s theorem,

| [adz=a@h---hal = | [{o(a) - o(@)}aal
d b;
< Z/;/ |9i(&1, - -+, i1, Wi, Tiy1, -+ - 2a)|du; dz

i=1

d
= Z(b‘ - a;) /I 19: (&1, -+, i1, Ziy * - -, z4) | dz.

i=1
Now use this bound for each cell:
[ 9t~ Soteam---hi < T [ {o(e) - slenie
< h1/|y1|dz+hz zk:/h l92(&k,1, T2, - -, za)|dz
+:+++hg ;/Ik l9a(&x,1,°* *5 Ek,d—1, Ta)|dz.
That 3 [y, 19:(€k1,+5 Eki1, Ziy - -+, 2a)|dz = [ |gi|dz + €(hy, - -+, ha), where €(hy,- -+, ha) —

0 as max{hy,- -+, ha} — O, follows from continuity and Riemann integrability of |g;(z)|. This

proves (A.2).
Next let us prove (A.3) under the stated extra assumptions. The proof is based on the
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following monstrous algebraic decomposition:

o(z) — g(€) = 2 f Gi(1, s iy - 2a)dug

=1

_Z/ / g'J(zli i) '7"'3uja"';$d)dui duj

i<i (A4)

/ / / 9iik(T1, o5 Uiy oy Uy o, Uy oo, Za)duy duy dug,
s<1<l¢ €& Y&
+...+(—1)d+1/ -../ gl"'d(ul,'")ud)dul"'dud
7] 13
For example, for d = 2 (A.4) amounts to

9(z1, z2) — 9(é1, &2) = 9(z1,22) — 9(&1, 22) + 9(21, 22) — 9(=1, &2)
— {9(z1, 22) — 9(z1, &2) — 9(&1, z2) + 9(&1, £2)}-

Since a p-dimensional integral of (87/dy; - - - 3yp) q(y1,* -, Yp) OVer a rectangle can be written
as an alternating sum of the 27 corner values of g, (A.4) has 3¢ — 1 terms on the right hand
side. (A.4) may .be proved by carefully keeping track of the number of pluses and minuses in

front of each particular term, and convince oneself that everything cancels except g(z) — g(¢).

Now (A.3) can be established. Consider the particular cell I first. Then

I/{g(‘”) g(&)}dz| < Z// lgi(z1, - - -, zq)|dy; dz

i=1

+2// / |gij (1,5 iy - o, 15,0 -, 24)|dug duj dz

1<J

+---+// / |91---a(u)|duy - - - dug dz
aq

= 3t 0 [l + 05— ) - ) [ s

=1 1<j
+-eet (b1~ a1) -+ (ba — ag) /I |91...a|dz. -
(A.3) follows by summing over all cells. |

Remark A.1. The lemma provides a multidimensional generalization of results reached

by Freedman and Diaconis (1981), cf. their Corollary 2.24.

Still another Riemann sum lemma is needed. The lemma provides a strengthening of the

previous one for the case that £, in the notation of (A.2) and (A.3), is the centre point in cell
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Lemma A.2. Let g : IR — IR have continuous and integrable partial derivatives g;,9:7,9:;s.
Let (ak — 1A, ax + 3h] = [T {ar; — 3hi, ax; + 2h;] be cell number k in a grid of cells with

volume hy---hq. Then

d

1 v
Zg(ak)hl...hd=/Rdgdx—zﬂh?/;Rdyﬁ dz+O(RS+---+h).  (AS)
k

=1

Proof: Consider a single cell first, and omit the subscript k for a moment. Then

/(‘a_%h, a+%h]g(9’)d‘° —g(a)hy---ha= / {9(z) — g(a)}dz

(a—3h, a+1h)]

N /;a— Lh, e+t 3h] {Zg'(a (x' a‘)+ Zg;,(a,)(z, a:)(l', - a,)} dz
Zg..(m) / . 2da: +y / g.j(&,)(a:,- — &;)(z; — a;)dz,

s—l 1<j a—-h a+

where we used the generalized mean-value theorem for terms in the first sum. This is also
possible for the second sum, but only after circumventive manoeuvring, which is necessary

since (z; — a;)(z; — a;) is neither nonnegative nor nonpositive on (a — 3h, a + 3A|.

Divide the cell into four regions, 91, -+, €4, where Q3 has (a; — 1h;, a;) and (a; - lh,-, a;)
instead of (a; — h,, a; + 1hi] and (a; — 1hj, aj + h,], where  similarly has (a; — 2h;, a;)
and [a;, aj + 1h;], Qs has [a;, a; + 2h,] and (a; — 3k, a;), and finally Q4 has [a;, a; + $hi]
and [aj, a; + ihi]' The mean-value theorem can be employed for each of these four regions,

and gives
/ p(a)( — 0:) (2 — a)da
(a—3h, a+1h]
ahehj{w(iu) = ©(%2) — ©(Z3) + ©(Z4)}h1- - - ha
for any continuous ¢, for suitable Z; in Qy,--, Z4 in (4.
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These observations lead to

ag)hy---h dz = z ay)}dz
zkjg(k)l )= [ .9 Z:/ RIORFICY

ak——h ak+2
= = z '2_4'hg Zgn(ak |)h1

=1

- Z h; h Z{gu (ak,cj,l) - g(ak tJ,2) g(a'k,u 3) + g(ak,sg,4)}h1

i<j

where @i, Gk,ij,1, ", Bk ij4 all lie in cell number k. (A.5) follows upon application of Lemma

Al

If g is only assumed to have second order continuous deriva.tives, then the reasoning above

is still valid, but the remainder in (A.5) is then in general only o(h? + - - + h2). |

Proof of Theorem 1: We will show

d
/ {bias(z)} dz = 2880h4 / (Fi)?dz
(A.6)
+ R2h2 | fifi +o( h5) ‘
Z:32 ‘f “ ;
/ Var{f(z)}dx=(§)d(nh1 cha)l - = f fdz +O(%1_::3> (A7)

/ [bias(z)|dz < Z L / \faldz +0 (Zhs) (A.8)

=1 =1
d
/ ma.d{f(z)}d:: = (= )1/2 (1 log(;;-_\/f)) /fllzdz (nhy - .},d)-ll2
(A.9)
+O((nhy -~ -hg)™ +Zh (nhy---hq)~23),
=1

which clearly suffices. Some of the error estimates can be improved, see Remark A.2 below.
Consider the Taylor expansions that led to (2.7) and (2.15). One has

f(z) = (a)+z.f.(a)(==c %)+ Zf-z(a)(z' a;)(ze — ar)

=1

+z Z f;ta (@2) (=i — ai) (=i — a.)(a:, - a,)

cta
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under the assumptions of the theorem, for some @, between a and z. Hence

wli)= [ fle)is

k;5)

d
= fla)hy++ha+ Zfi(a)§(~1)ff+lh.-(h1 - ha)

+Zf“(a) Zhi(hy-- hd)+Zf.¢(a) (—1)%*9¢h;he(hy - - - ha)

=1 (T34
+ f its (asta. i) T;T42, dx
.‘VZ; ' T IG-onam

by (A.1), where &;¢,,; is somewhere in [a + (F — 1)k, a + jh]. A more complete version of (2.7)
and (2.15) is accordingly

bias(z) = qu(a){ h} - -(x: a;)*} + 6(=), (A.10)
=1
where _ _
b)= Y @)Y 5 Fuo i) [ miwews def(ha-e-ha)
,'1,...,“ i, ¢, [(F—1)h, 5B]
(A.11)

- Z 6 fiu (@z)(z:i — ai)(ze — ar)(zs — a,).
it

Let us prove (A.6). Write (A.10) as

bias(z) = b(z) + 8(z) = b(z) + D _ bits(2).

1,88

The analysis of Section 2 implies together with the lemma above that

/{b(z)}’dz_ 2880 h; {/(fu)zdz-FO (E hc)}

helfiedlf)

c<J

d
2880h4/(f.,)2dz+232h2h2/f.~.-f,-,~ dz+0 (ghi) :

1<y

(The lemma can be applied since (9/9z,) fii f,, ="f'.“ f,-,- + fu 'J;jjt ‘is absolutely integrable:
[ fae fisldz < {f(fu0)?dz}?{[(fi;)?dz}/? < 00.) Next conmsider 6(z) = X=;,, 6its(2).
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One has
Siii () = % {Z"j(-") fi (5"#‘,1'):11‘(_1)"‘“"?— fii () (i - a-‘)s} :
so that o 1
[ e < glgge [ (i) s () (1Y
+f RICCEE!

Employing the generalized mean value theorem and some analysis we get the upper bound
(3R fis (@iiis)Y2ha - ha+ 5hszh? fui (4)2ha - - ha. Summing over all cells we
arrive at [{5;(z)}2dz = O(h¢). Similar analysis for the other terms, combined with the rough
inequality §(z)? < 29° i s Sits(z)?, gives [{6(z)}2dz =0 (Z?=1 hg) . This also shows, using
[{b(z)}2dz =0 (2:=1 hg), that

d
| f b(z)5(z)dz| = O (Z hg) .
i . =1 .
All this proves (A.6).

(A.8) can be proved in a similar way; there are in fact fewer details to work through, and

we omit them.

Next up is (A.7). An exact expression is

Var{f(z)} = (nhy---hq)~ ‘Zc,(a,-)’ po(y)

+hg
2
-2 {Z eila) 2L }
for z € I(k) = (a — 1h, a+ 1A}, where
2O _ () 4 3 eI
= (A.13)
+ z f;'i(aii,j)gh? + Z fc’t(at't,j)%(—l)j'"*-hhiht,
i=1 i

with @;; j, di¢; being somewhere in (a+(j7—1)k, a+jh). Tt is not difficult to get || I(k) G (z)%dz =
(8)%h1-+-ha and [y ci(@)eji(@)dz = 1L, (3)/ 0= (3) 69 (hy -« - ha) for 5,5 € {0,1}4,
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from (2.9) and (2.10). It follows after some algebraic efforts that

[ var f@)da= (aha--- by G (e e
I(k)
d 1 2 .o 1 d
+ 2 gt 2 @) (3) - ha
i=1 Fi

+ 3 ghihe S (-1 o) (3) A - -hd}
i j :

d
- L TIG =60 s

it =1
d
+ 1) Y A@ A1+ ()Y o b
. i=1

This implies, using the Riemann sum lemmas, that

) d
[rs Vae i@ da= (s --ha) {(2)“+ 0 (Z h?) }

=1

_%{/fzdz+? (f:hz)}

=1
i.e. (A.7) is true. (A minor technicality is that d; above may lie outside the cell I(k); it is
however at any rate in (a — h, a + h|, and a version of the Riemann sum lemma can be stated

and proved for such occasions.)

Let us finally prove (A.9). Let Yp(k;j;¢) be the indicator of the event that X; falls in
Io(k; ) = (a+ (5 — 1)h, a + jh], so that Yo(k; 5) = D, Yo(k; 7; ). We may write

f(a:) - Ef(a:) = (nhy--- hd)"l/z% g Ani(z)
where

Ani(z) = (hy---ha)™? Z ci(z){Yo(k; 75 %) — po(4)}-
Let ol
on(z)? = Var{A,;(z)}
= (ha-+h) [ 6@ (i}~ (i)} - T ex(ees(@polimli')
i i (A.14)

2
- St 2 s a2}

i
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That
1 - ()] — 31/2 on(z)
B @) & i = QI < BT

where p,(z) = E|Ani(z)|® and B is a universal constant, is a consequence of a nice Berry-
¥ b q y

Esséen type inequality proved in Devroye and Gyorfi (1985, Lemma 8, p. 90). Hence
-~ — 2
E|fa(z) - f(z)| = (nhy- - ha) 1/2{(;)1/2%(29 + en(2)} (A.15)

where |en(2)] < B pa(2)/{v/non(2)*}.

Consider first the contribution from ¢,(z). Combining (A.13) and (A.14) one sees that the
leading terms in a Taylor expansion for o,(z)? is f(a) 3_; ¢j(z)? + i, 1hifi(a) (= 1)’""1

.c,-(m)z. An expansion for o,(z) accordingly starts out as

1/2
on(z) = f(a)'/? {ZC:'(EV}

(A.16)

-1/2 '
+z hi f(a)” 1/’{2c,(x) } 25@) T (-1 ey(a) 4+

=1

This implies, after having properly tended to remainder terms, that

f, RACES G+ flog(l +V2)Y1 () /hy -
|fi(a)]
o (;h e )1/2h h)

and consequently

i=1

d
fIR ,On(z)dz = {% + 2—\1/—5 log(1+v2)}¢ / fY?dz+0 (Z h,-) (A.17)

provided [ |f;|/f1/?dz is finite, i = 1,---,d.

One will in fact usually have O ( hz) as an error term above. This is because the sec-

=1 "%
ond term of (A 16) integrates to zero over I(k) and because [ f1/2dz— 3", f(ax)/?hy---hy =
4 AR 2 P f(z)Y%dz + O (Zd hs). The error term of (A.17) can be shown to be

t=1 %

(o) ( i=1 hz) provided |f; f;|/f%/% and |fi;|/ f/? have finite integrals.
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It remains to consider the contribution to IMAD from ¢, (z). The absolute third moment

of A, ¢(z) can be bounded as follows:

pnla) = (1) 2 mi)le®) — e (alpoli)

i

- En - e@mF]

< (hy---hg)3/? {ZPO(J’)C:"(E) + Zpo(j) Zc:"(z)PO(J") + E Cj'(z)Po(J")}

(The bound can be somewhat improved, but not its order of magnitude.) By the bound quoted

after (A.15), therefore, : -

3B 225 ¢i(2)po(s)/ (h1- - - ha)
len(2)| < (nhy - ha) 1/ :"(x)z. a)

Here 3, ¢5(e)po)/ (1 -++he) = £(0) + O(Sy ) and on(a)? = f(a) eila)? +

O(XL, k). 1t follows that
1
3B d
I/r(k) en{e)dal'< W/z(k) [{;c,.(z)z} . (g h')] *

d
= (nhl . 'hd)_llz {3(%)‘13 +0 (E ht) } hl . 'hd-

=1

The available bound on ¢,(z) therefore leads (only) to

d
| /R en(z)dz| < 3(%)43 Volume(R)(nhy -+ hg)~/% + 0 (Z hi/(nhy - - -h,,)l/z) :

=1
- Combining this bound with (A.15) and (A.17) finally proves (A.9) and Theorem 1. 1

Remark A.2. One sometimes gets a better idea of the typical magnitude of error terms
if the “next term” of the expansion in question is computed, assuming extra smoothness.
Consider for example the IMSE expression for the GFP obtained in Theorem 1. One may go

through the calculations of Section 2 once more, but including the next order term in each
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expansion. For example,
L
bias(e) = 3" u@{(2h? - Lo — 0}
=1

d cor 1 2 1 3
+ E fiii (0){ﬁ(-"~'i — ai)hi — 5(zi — @) }

+ Z fie (a){ ~hi(ze— ar) - -( z; — a;)*(z¢ - @)}

1%L

is a more complete version of (2.15). And after a fair amount of algebraic and analytic details

one arrives at

IMSE = (= )"{1+Z hsz..dx}(nhl hg)!

=1

A{fre-infure] -

+ Z 2880h4 /(fn)zdx‘*‘ Z 32h2h¢ / fufu dz

+E 241920 / (Fi)de
+ E{ 34560 i ht /(fstt)zdz ik 3'76—5}‘4’12/ fnsfitt dz}

+ E 768h2h2hc/fu¢fucd$

IJ ¥
distinct

Proof of Theorem 2. The steps to be taken are similar to, but sometimes more involved,

than the ones digplayed in the proof of Theorem 1, and most of the details will be omitted.

One can give a longer and exact expression for the bias than the Taylor approximation
(3.7), using an exact version of (3.5). Then one is led to an analogue of the result stated before

(3.8). A key observation is then that

S it i= [ o (3.

=1
which follows by Lemma A.2, since ai:;{ fi(@)}? = 2{fie(2)}? + 2f;(2) "jja (:c) integrates to
[2
zero. Hence the error term corresponding to summing up E?=1 fi(z0)?i5 162 6 -+-84 terms is

129
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O( L, 8%) = O(TL, h¥/m?). But summing up- fj; (20)?6} mj 61 - - -8, terms, for example, is
seen to lead to remainder with magnitude O(3 %, 67 mé) = O(Z%, h¥/m;), and similarly for

the other contributions, so O(‘:“_1 ?/m;) is the remainder for the integrated squared bias.

One can similarly scrutinize the contributions to IAB, using Lemmas A.1 and A.2. There
are remainders of size O(Y_j; 6) = O(T %, h¥/m?) and O(T L, 63 m?) = O(TL, h3/my),

and the la.tter one dominates.

Next consider IVAR. An exact version of (3.5) based on an exact second order Taylor

expansion is

o
pis,+++,ia)/(81+++8a) = f(zo) + D fi(=0)i;d;

i=1
1 1 '
. . 2 . o
t3 D Fiil#gi) 63+ )8+ > Fiel&: je)izie 8560,
=1 i<t
where Z; ;; and ; jo are in (zo+ (f — })6, zo+ (i1 +36]; 1-m; <4; <m;—1,5=1,---,d. (We
ignore some slight complications of no consequence that enter the situation for EJ- <¢ terms
when one or more i; is zero; then (z; — 2o ;)(z¢ — Zo,¢) is neither nonnegative nor nonpositive

on the cell, and the generalized mean-value theorem must be applied with cutting and pasting.

See the proof of Lemma A.2.) From a formula in Section 3.2, therefore,
g 2.4 1
Var{fagp(z)} = (nhy-- 'hd)'l{(g)d H(l + m)f(%)

25221'::(%,”)(1 L')z- + }

m,
,_1 § d

1 1 ] :
plie)+g ;53 Z:fﬁ(w)('? + i+ )
Now
=

8 Y FislEus)6d + 1) =2l = 06 milis(a3)),

where |f;;(z3)| = max',e[,,o_h' zo+h] | f;i(z)]. Even though z} may be outside of Co = (zo —
36, zo + 36], one may show that the sum of H mf]fjj(xa)[& -+« 8q, over all cells, is

§mi{[ |fijldz + O(hy + - - - + hq)}, using techniques as in Lemmas A.1 and A.2. The result
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from all this is that

i=1

It remains only to take care of IMAD. One has

. _ 1 <
/C  mad{fxsu(e)}dz = (ndy -8 1/2E|7_;§B,.J,|

by (3.14), writing
w(s !
B"»k = (61 N '54)1/2 Z —’(n_l,.—_d){y(‘la “1d; k) p(‘b )’d)}a
1,84 1 _
where Y (3,...,14; k) = Y (i;k) is an indicator for the event that- X; falls in Co(f) = (z0 +
(1 - 38, =0+ (i + )], so that Y (i) = }_p_; Y (i; k). Using Lemma 8 of Devroye and Gyorfi
(1985, p. 90) again,
EILXR:B =)o, +e
ﬁ P n, - n)

say, where 02 = Var B, and |€s| < B pn/(v/n02), pn = E|Bp1|3. Going once more through

arguments that resemble those used in the proof of Theorem 1, the result is that the contri-

bution to IMAD from the o, part is
-1/2 ) (2\1/2/2+d/2 . 1/2 2
(nhy---hy) ()Y*(3) II 1+— fPdz+0 Zh
i=1 i=1

provided the integrals [ | f,,l / f}/*dz are finite, and that the contribution from the ¢, part over

some bounded region R is less than
(néy-- Sd) 1/23B n"llzml md (81 +++64)"Y/? Volume(R)

= .—_d
3B Bhi~ Ty Volume(R).

This proves Theorem 2. [ ]

Proof of Theorem 3: We are in a position to use techniques displayed in the proofs of

Theorems 1 and 2 and omit most details.
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One has

T(ly, -+, L3) p(L1,++,2q)
e Y >

Efgrp-asa(@ = >
ll )".ltd

and one can write down an exact exprssion for p(£y, -+, £4)/(81 - +84) based on an exact third
order Taylor expansion for f. (4.7) displays the first terms in the expression for p(£y, - - -, £4) /
(61--+84). The next term, i.e. the exact remainder, has 34, 2 3‘;-,-,- (Gasi, ) (B - 362+ 4, — 1)6?
for some @i, in (a+(£—1)5, a+£5], and some other terms of the same magnitude. Reasoning

as in the proof of Theorem 1, one has

bias(z) = b(z) + 8(2) = b(z) + 3 G (a),
i3,k
. —vd 7. 1(,.2 2 _ 1¢.. 2 1 1
with ¥(z) = >_i, fula){{z(m} + 1)6? — 3(z:i — a;)?} for z € (a — 38, a + 36], and, for ex-
ample, 8;;:(z) = %5‘5’ 2o ?ia (ﬁ;;,g)%(ﬂf - %ﬁf + 4 — %) for = in the same cell. These

facts can be used to show that [ b(z)?dz equals the right hand side of (4.9) with remainder
O (T, hts) =0 (Thyhe/ms) =0 (Th, s8mt). Also, [ 8s(z)*dz = 0 (T, 6¢mf) =
: 1/2
0 (T, h/m?), and| [ b(2)6(z)dz| = {0 (T, bt) O (T, ¢/m?) }/*= 0 (T, hi/mi) |

Similar analysis shows"

d d
1 2 1 /‘ v 3
< —h; —_— w5 ld h; il -
IAB < ,.;12"' (1+ 2m?> |fisldz+O (; ./fm)
Next up is IVAR. One has
T(9® p(9)

Var{faFp-asH(®)} = (nh1---ha) T ) e e
[/

L %{; mT(l) p(Z)Sd}z’

Lo Mg by-ee

and the expansion for p(£)/(61- - - 84) mentioned above can be used to get
? —1¢,2
/ {faFp-asu(@)}dz = (nhy - ha){(3)"f(a)61- -84
(a-%&, ¢+—;-6] .

d
+ 30 mE fu()h---6)

=1

d
- .::{f(a)%l seebg+ Z O(6*m? f(a) fii(a))b1 -+ - 64},

=1
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and hence, using once more the Riemann sum lemmas,

=1

IVAR = (nhy---ha)H{(3 2y +0 (th) } - —{/ f’dz+o0 (th)
It remains to deal with IMAD. One has

mad{fgrp.asH(z)} = (nhy---ha) ™Y/ ZEI% > Cuil(2)]

from Section 4.3, where

Crk(2) = (h1-+-ha) M2 " T(O{Y (& k) - p(£)}.
4

Once more
B-L 3 Cus(@)] = (2)¥2n(2) + ma()
\/r—t' k=1 T

where 7,(z)? = Var Cp x(z) and |na(z)| < B E|Chni(z)[3/{y/n7(z)?}. Reasoning as at previ-

ous occasions one may show

const

|/R’ln($)d3‘i < W

for each bounded region R, with the const. in question proportional to the volume of R. Also,

_ T(9? p(9 T(® 0 \*
rn(z)’—Zml...de..ad-hv--hd{E,,.l...mdal...ad}

¢ t
_f(a)ﬁIZm +1- 61:,(1 2;“'()2("-') T(e) -
"‘Z; 5f,,(a)2(ez g4l ) T(e)zd
+V;_; ~6:6; f:i(a) E(g,__ ,__) T(z)2 -
+0 (ng) ;
=1
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. so that

4 (2m?+1— 6u;(1—u)) "’
r,,(x)=f(a)1/2JH( ’ 3sz J)

= ]

d d 2 . -1/2 2 1
1o .0 v-1/2 2mj +1 - 6u;(1 ~ u)) ; 2mf +1)(uwi — 3)
+2_ 581 11;11 ( 3m? ) T = w)

d
+>_0(8tmH{|fala)lf ()2 + fi(a)*1(a)"¥/%)).
=1

It follows that

/ ra(@)dz = f(a)/28, -+ -84 J(my) - - T (ma)
(a— 36, a+36] !

d
+ > 0(8mH{1f(a)|£(a) 2 + fi(a) £ (a) 2} ) 61 b
=1
and finally that
| | d
/ ta(z)dz = J(my) - - J(mq) f fY%z+0 (Z h,z) ,
&)

provided |fi;|/f1/? and |f;f;|/f3/? have finite integrals.

This proves Theorem 3. 1
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